
As follows from (10), with an increase in the thickness of the deposition the diffusion flow to the rough surface 

diminishes, and this may lead to a decrease in the concentration of particles at the surface and to a reduction in the migration 
component of the rate of deposition. 

NOTATION 

a, particle dimension; d, tube diameter; D, diffusion factor; C, particle concentration; g, acceleration of free fall; 
JD, diffusion flow at the surface; R, R 1, inside and outside radii of the tube; U, ,  dynamic velocity; v, particle volume; 
y, coordinate; ~i, ~ coefficients of heat transfer from the internal and external media;/~ -- 1 - 6/R, choking factor; A, 
roughness height; 6, thickness of deposition; ere , resistance; err, specific dissipation energy; u, kinematic viscosity; Ap 

= P r e  - P; Pre, P, density of particles and the carrier phase; r/, dynamic viscosity; r, stay time; r r, relaxation time; r w, tangential 
friction; ~o, volumetric particle fraction. Subscript: 0, for a clean tube. 
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CHANGES IN THE STRUCTURE OF TURBULENT FLOWS 

SUBJECTED TO THE ACTION OF FLOW ACCELERATION 

V. G. Zubkov UDC 532.517.4 

We examine the effects resulting from the laminarization of turbulent flows subjected to the action 
of flow acceleration. We describe the factors and conditions for the appearance of this phenomenon. 
As a theoretical base for this investigation we employ a mathematical model of a boundary layer 

for a broad range of turbulent Reynolds numbers, based on a modified e-e turbulence model. 

The theory of hydrodynamic stability [1] rejects the possibility of a reverse transition from turbulent flow to 
laminar. However, in a number of experimental studies into turbulent flows [2, 3] a significant deviation was noted in 
the integral characteristics of heat exchange and friction, as well as in the profiles of the average velocity and temperature 
from those universal relationships applicable to a turbulent flow regime in the direction of relationships that are more 
in line with the laminar regime. This phenomenon has been designated as the laminarization of turbulent flows. 

In their effort  to generalize and systematize questions related to the phenomenon of turbulent-flow laminarization, 
the authors of [4], on the basis of studies that they carried out, came to the conclusion that it is possible to isolate certain 
external factors which, under these conditions, lead to a change in the mechanism of turbulent exchange: 

flow acceleration which strives to reduce the extent to which the turbulent frictional stresses affect the average 

flow characteristics [3, 5]; 
the curvature of the streamlined surface, resulting in transverse flows through the channel [6]; 
the cooling of the boundary layer, which results in a tendency to stabilize the vortex structure of the boundary 

layer [7]. 
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It is obvious that it is impossible to draw a clearly delineated boundary between the influence of  these factors 

on the structure of turbulent flows, since they are interrelated with one another. For example, any increase in the curvature 

of the streamlined profile or an increase in the nonuniformity of  the temperature field along and across the flow will 

lead to an increase in f low acceleration. Moreover,  in real designs these factors may make themselves felt  simultaneously. 

Therefore,  the division of external factors affect ing the laminarization of turbulent flows is conditional in nature, but 

useful f rom a methodological standpoint,  enhancing the detailed study of individual aspects of  the phenomenon. 

In experimental  studies into the flow of a gas in tubes with heated walls [8] note was also taken of the phenomenon 

of laminarization. It may be assumed that as the temperature rises there is an increase in the viscosity of  the gas and, 

consequently, turbulent vortices are subjected to increasingly viscous damping as the gas makes its way through the tube. 

In this case, any turbulent gas f low will finally change over into laminar flow, provided that the walls are sufficiently 

heated over an adequate length. This may indeed be valid; however,  it is obvious that just as in the case of  boundary-  

layer cooling, we are dealing here with a nonuniformity  in the temperature field, resulting in increased acceleration of 

the flow. 

Bearing in mind the above-presented  data, there is some point to examining in greater detail the conditions under 

which flow acceleration influences the structure of turbulent flows. Although the explanation for  the laminarization 

of turbulent flows demands profound study into the very nature of  the formation and disruption of  turbulence, some 

of the quantitative relationships for this process can be predicted, relying on the integral momentum equation for the 

case of a plane stationary boundary layer within a compressible fluid, in the absence of any body- force  effect  [9]: 

d6._,-~ 8,_, dU~ 2 r ~'v~z -- ~ (1) 
dx ' U~ dx 83 , 9U~ " 

If  the velocity profile in the turbulent boundary layer corresponds to the 1/7 rule, the formula  for the local coefficient 

of friction can be obtained in the form 

TW 
p;j~ - 0 , 0 i 2 8 ( U = S J v )  ,,4 (2) 

Having substituted into (1) the value of r w f rom (2) and the ratio of  the conditional boundary- layer  thicknesses, equal 

to 1.29, after introduction of the momentum-loss  thickness into the Reynolds number  we derive the following equation: 

v d R %  _ 0,0128 [ v dU~'~ 

(2,29 - -  M ~ ) U~R%. dx (2,29 - -  M z) r~el '~'~ \ j ~  . (3) rv 6, d x  

With large accelerations of the flow, the last of the terms in Eq. (3) increases. The gradient in the Reynolds number  may 

then become negative, which leads to a reduction in R%=. I f  we draw the entirely logical, even if  quite coarse, conclusion 

to the effect  that laminarization of turbulent flows begins at the same Reynolds numbers as in the direct transition [(R%a)w 

= 360], in the case of  flows with M << 1 we can obtain the dimensionless acceleration parameter  which defines the onset 
of laminarization: 

v d U .  
a : - -  U~-- dx > 3 ' 5 " 1 0  -~ (4) 

It has been established experimentally [2, 4, 5] that a reduction in the characteristics of heat exchange begins to make 

itself evident in flows with K - 2-4.10 -6. However,  this criterion does not allow for a quantitative evaluation of the effects 
of laminarization in turbulent flows. 

Experimental  and theoretical data [3, 10] have demonstrated that the so-called reverse transition of the turbulent 

flow regime into a laminar regime under the action of flow acceleration. For any levels of  acceleration, even with K 

> 10 -s,  a high level of pulsations in velocity and temperature is maintained, i.e., the flow cannot be regarded as laminar. 

It is assumed that laminarization is a special specific form of the turbulent flow regime and physical and mathematical 
models of turbulent transport  may serve as its theoretical basis. 

Theoretical studies of  turbulent boundary layers in accelerating flows [10] have demonstrated the possibility of 
describing the effects of laminarization by means of a mathematical model of a boundary layer for a broad range of turbulent 

Reynolds numbers [ 11 ], based on the modified two-parameter  e-e turbulence model. The utilization of this model allows 

in greater detail to examine the processes of heat and momentum transfer in accelerated flows, to determine the features 

and conditions for the phenomena of laminarization, and to describe the nature of the changes occurring within the structure 
of turbulent flows, ascribed to the effect  of  a negative pressure gradient. Moreover,  the carrying out of  a numerical 
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Fig. I. Distribution of  conditional boundary-layer  thicknesses (expulsion 61 and loss of  

momentum 6~.), of the Reynolds number R%~, and of the coefficient of friction Cf in 
the effective zone of flow acceleration. Points represent experimental data [3]; curves 
represent calculations based on the model. 6i, x, m. 
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Fig. 2. Calculation of the heat exchange in the effective flow-acceleration zone: a) moderate 

flow acceleration (Kma x = 2.52.10-6;b) strong flow acceleration (Kma x = 3.39.10-% Points 
represent experimental data [2]; 1) calculations based on the model [13]; 2) calculation 

based on the proposed model; 3) calculations based on the model [13], but with K > 0 
- p<u'v'> = const; 4) calculation based on the model [14]. 

experiment on the basis of  this model will arm the researcher with new data that have not become available through 
empirical means up to the present time. 

In accordance with [1 I], considering the equations of energy for the determination of  the transfer of heat, the 

mathematical model for  the boundary layer in the case of a broad range of turbulent Reynolds numbers include: 

the system of equations 

OpV OU OU 0 [ O_~g ! dp 
apu + _ o, pu  + ov - -  - (r~ + ~t) 
a ~ a v  ~ av au dx 

aT aT O [ (~ + ~0 aT | dp ( OU ~ 2 
+ a T  - t + u . + + dx ~ Og ) 

Oe O ~ _  0 
oU ~ + oV OV av 

ag 
ou ~ + ov 

�9 , l  

O e ,  0 [ ( IX+ , t )  08 ] e f OU 2 
O{J Oy [\ o~ ~ + Cap t-~- ~, OF ) --" CJ 9s-~'ze 

(5)  

the closing relationships 

Ixt=Q, ,uP v Z r -  C t ~  Prt== 0,9, ~== 1,3, C1=  1,65, C , , : = 2 [ ! - - 0 , 3 e x p ( - - R ~ ) l ,  
- l=rt ' 

_ ~*)); Cr~ = 0,095 [-- exp ( - -  2,5) -}- exp (---125/(50 + R T))], f = - -  exp (--  10) -}- exp ( - -  250/(25 + 3 

the boundary conditions 

u .... 0 U w = V w 

g--~ oo 

% = %, = o, Tw ~-= ,i~(x), 

OU OT Oe Os 
0!4 O!l 0 W Oil 

(6)  

(7) 
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Fig. 3. Changes in the intensity of turbulence in the effective flow-acceleration zone: 

points represent experimental data [3]; curves represent calculations based on the models; 

1, 1") e/Uoo 2 and e/Uo '~ for  x = 9.36 m; 2, 2") e/Uoo 2 for x = 9.88 m; 3, 3') e/Uoo 2 for 

x = 10.16 m; 4, 4') e/Uoo 2 for x --10.77 m; 5, 5") e/Uo 2 for x = 10.16 m; the acceleration 

factor K corresponds to the values of x shown in Fig. 1. 

Fig. 4. Distribution of the integral turbulence scale in the effective zone of flow acceleration: 

1) 1.3 m; 2) 1.45; 3) 1.58; 4) 1.67. 

Equations (5) in conjunction with conditions (6) and (7), as well as in conjunction with the equation of state and 

the relationships # = ~ p ,  T), A = A(p, T), Cp = Cp(p, T), and R = R(p, T) were all solved on a computer. The initial equations 

and boundary conditions were approximated by finite-difference analogs written in an implicit scheme. The initial profiles 

were based on experimental and theoretical data for the laminar and turbulent flow regimes [9, 12]. The system of algebraic 

equations derived here was solved by the standard sweeping method. To speed up the calculation process and to ensure 

its accuracy, we introduced a modified system of coordinates to "compress" the lateral coordinate near the wall. Satisfactory 

calculational accuracy was achieved for nongradient flow regimes at 40 points across the calculation grid, and in the case 

of accelerated flows at 100 points. 
Figure 1 shows the results obtained in a calculation based on the model as compared to the experimental data 

from [3]. As we can see f rom these curves, although the calculation yields somewhat elevated results, the qualitative 
coincidence with experiment is satisfactory. Acceleration of the flow in the interval of a positive gradient for the parameter 

K leads to a pronounced reduction in the thickness of the dynamic boundary layer (61 and 62 ,  the conditional thicknesses 
of expulsion and loss of  momentum). This reduction is so significant that even despite the simultaneous increase in the 

velocity Uoo of the incident flow, we have a reduction in the Reynolds number Re62. It should be noted that these parameters 

reach their minimum downstream of the point at which K is at its maximum. It has been established at the same time 

that the relative thickness of  the viscous laminar sublayer 6 e increases under these conditions. The pronounced changes 
in the thickness of  the dynamic boundary layer are accompanied by an increase in the local tangential frictional stress 

at the wall during the initial stage of flow acceleration. The reduction in the coefficient  of  friction Cf begins in the region 
of negative values for  the gradient of the parameter K. Here the minimum value of Cf for  x = 11.5 m is smaller by a 

factor of  more than two than the values of the coefficient Cf for a nongradient regime. 
When the accelerating action (K = 0) comes to an end, the characteristics of the boundary layer approach quantities 

corresponding to developed turbulent flow. However,  since the velocity Uoo of the external flow increased substantially, 
the conditional thicknesses of the boundary layer became smaller. 

The possibilities for  the proposed model in the description of heat exchange in turbulent boundary layers in the 
case of  accelerated flows were evaluated through comparison against experimental data [2] (the points in Fig. 2). The 

velocity of the incident flow, the difference in temperature between the wall and the external flow, experimentally derived, 

were utilized in the calculation as the boundary conditions. We can see f rom the cited data that the action of the negative 

pressure gradients on the flow leads to a reduction in the intensity of heat exchange. In this case, not all of  the models 
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used for the calculation yield a correct description of the experiment. The nature of  the change in the Stanton number, 

calculated on the basis of the method covered in [13] (curve 1), may erroneously lead to the conclusion that there exists 
a Reynolds analogy between the processes of heat and momentum transfer in the accelerated flow. A drawback of this 
model is the fact that it specifies the magnitude of the integral turbulence dimension L in the form of a functional parametric 
dependence exclusively on the dimensionless lateral coordinate. In complex flows involving injection, under nonisothermal 
conditions or in the flows being considered here, governed by the presence of a strong pressure gradient, the dimension 
L proves to be a function of a larger number of variables, as will be demonstrated below. 

In the case of moderate flow accelerations (Kma x --- 2.52.10-e), acting at a considerable distance along the surface 
being studied (Fig. 2a), the best coincidence with experimental data is offered by the proposed model. Calculations based 

on the model in [14] lead to less exact results (curve 4). 
As follows from Fig. 2b, when the acceleration is in the form of a brief spike, the calculational accuracy is diminished 

(curve 2), but the proposed model allows us correctly to evaluate the region of reduced heat-exchange intensity. 
According to the qualitative scheme for developed turbulence [1], perturbations of various dimensions are 

simultaneously present in a turbulent flow. With transition to the more minor of the pulsations, in addition to the weakening 
of the orienting effect of the averaged flow on the flow exhibiting pulsations, the influence of all of its geometric and 
kinematic features is also weakened. It may be assumed that the characteristics of the averaged flow do not directly define 
the statistical regime of very small-scale pulsations. The averaged flow affects the very small-scale pulsations only indirectly 
in terms of the magnitude of that energy flux which is transferred from the flow through all of the perturbations of various 
magnitudes and is scattered finally, changing into heat. Thus, sharp changes in the parameters of the averaged flow will 
affect the pulsations of the flow only after a certain period of time has elapsed, which is the same as saying only after 
some distance downstream in the direction of the flow has been covered. 

Analysis of the experimental data [3] and the results of the numerical study into the proposed boundary-layer 
model for a broad range of turbulent Reynolds numbers, such as those shown in Fig. 3, also provides a basis for the contention 
that some inertia exists in the parameters of the fluctuating transfer relative to changes in the averaged flow. The graphs 
show the distribution of the relative e/Uoo 2 and absolute e/Up 2 magnitudes of intensity in turbulence e in the direction 
of the streamline ~b as a function of the acceleration ratio. The relative values of e/Uoo z (curves 1'-4') in the effective 
flow acceleration zone diminish i.e., we can speak of a reduction in the relative intensity of flow turbulence. This leads 
to a disruption of the conditions (generally accepted for the calculation of turbulent flows) under which the pulsating 
components affect the averaged parameters of the flow. At the same time, the absolute values of e/Up z (curve 5") remain 

virtually unchanged, at least in the initial stage of the acceleration. 
It is entirely obvious that the pulsating motion exhibits a certain "memory" of the development of the flow, and 

this must be taken into consideration in calculating the accelerated flows. Models which fail to take this into consideration, 
such as, for example, [13], do not permit correct description of the effect of laminarization in turbulent flows. 

In the present investigation we confirmed the fact of the existence of inertia in the parameters of fluctuating 
transfer and in its influence on the averaged characteristics of the flow, this having been accomplished by computation. 
We made use of the following computation algorithm, Before and beyond the effective zone of the negative pressure 
gradient the solution is achieved on the basis of one of the turbulent models, for example, the one based on the hypothesis 
of the length of the displacement path or the one which takes into consideration the equation for intensity of turbulence 
[13]. Over the extent of the entire flow acceleration region the magnitude of the turbulent Reynolds stress is "frozen 
in," i.e., it remains equal to -p<u'v'> o, which is the value of the Reynolds stress at the point at which the effect of the 

negative pressure gradient sets in. 
The computational results obtained on the basis of this algorithm are shown in Fig. 2 (curve 3). Excellent coincidence 

between theoretical and experimental data is observed for the case of sharp spiking values of the acceleration parameter 
(Fig. 2b). However, since it is only the pressure gradient that again becomes equal to zero, on the basis of the proposed 
algorithm, the Reynolds stress ceases to be a constant quantity. In this case, the characteristics of heat exchange coincides 
with the calculation data, for example, based on the model from [ 13], but differ significantly from the experimental data. 

Moderate pressure gradients (curve 3 in Fig. 2a) exert no such significant influence on the pulsation characteristics 
and the assumption of constancy in -p<u'v'> 0 in the effective acceleration zone leads to erroneous results. 

If we take into consideration that the mathematical model of the boundary layer for a broad range of turbulent 
Reynolds numbers [11 ] for all the cited data satisfactorily describes the effect of laminarization, it becomes possible on 
the basis of this model to achieve an estimate through some of the fluctuating flow characteristics not earlier achieved 
experimentally. For example, let us examine the changes in the integral dimension of turbulence in the zone of effective 

flow acceleration. Using the Rotta formula for dissipation of tubulent energy [12]: 
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e = \ - - ~ t  -~ 0,202 L 

by processing the results from the calculation of the accelerated flows on the basis of the proposed boundary-layer model 
we can derive the values for L* (Fig. 4). The dimension L* is only an analog of the integral scale [12]. However, qualitatively 
they are similar and it might be asserted that the changes in L* are analogous to changes in L in the zone of effective 
flow acceleration. 

NOTATION 

x, coordinate in the direction of the flow; y, coordinate transverse to the flow; U, velocity component along the 
x axis; V, velocity component along the y axis; p, pressure; T, temperature; u', v', w', or ui', components of pulsating 

13  3 , 
velocity; i = 1, 2, 3; e =~ ~ u i ' ) , )  is the intensity of turbulence; e=~r ~ /axy> , isotropic portion of total dissi- 

pation of turbulent energy;/~, dynamic viscosity; v, kinematic viscosity; p, density; ~, coefficient of heat transfer; Cp, 
heat capacity of fluid at constant pressure; -p<u'v'>, turbulent tangential frictional stress; Uoo, velocity at boundary of 
boundary layer; Uo, velocity at boundary of boundary layer at the point at which flow acceleration begins; rw, frictional 
stress on streamlined surface; 6, boundary-layer thickness; gl, 62, conditional thicknesses of expulsion and loss of momentum; 
M, Mach number; Re~2, Reynolds number calculated no the basis of the conditional thickness of loss of momentum; K, 
parameter of flow acceleration; #t, coefficient of turbulent exchange; At, coefficient of turbulent heat transfer; Pr t = c ~ t / ~ ,  
turbulent Prandtl numbers; Re t = v/-e-L/v, R t = e2/(ue), turbulent Reynolds numbers; Cf, local coefficient of friction; f, 
correction function in equation for dissipation; C 1, C 2, C~,, a s, coefficients; y, = yUr/u , dimensionless coordinates across 
the flow; U,  = r w ~  ~, dynamic velocity; R, gas constant; St, Stanton number; L, integral turbulence scale; L*, analog 
of integral turbulence scale; 6], thickness of the laminar viscous sublayer; r stream function. 
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